Lecture 13: Martingale Difference Sequence & Azuma-Hoeffding Inequality

Azuma's Inequality

- Let $\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$ be a filtration
- Let $(\mathbb{F}_0, \mathbb{F}_1, \dots, \mathbb{F}_n)$ be a martingale sequence with respect to the filtration above
- Let $\mathbb{Y}_0 = \mathbb{F}_0$, and $\mathbb{Y}_{t+1} = \mathbb{F}_{t+1} \mathbb{F}_t$, for $0 \leqslant t < n$
- Intuition: \mathbb{Y}_{t+1} measures the increase in \mathbb{Y}_{t+1} from \mathbb{Y}_t . If \mathbb{Y}_{t+1} is negative then it implies that \mathbb{Y}_{t+1} is smaller than \mathbb{Y}_t
- Note that $\mathbb{E}\left[\mathbb{Y}_{t+1}|\mathcal{F}_t\right] = 0$, because we have $\mathbb{E}\left[\mathbb{F}_{t+1}|\mathcal{F}_t\right] = \mathbb{F}_t$

Theorem (Azuma's Inequality)

Suppose $(\mathbb{Y}_0, \ldots, \mathbb{Y}_n)$ be a martingale difference sequence with respect to the filtration $\{\emptyset, \Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$. Assume that the following condition holds for all $x \in \Omega$ and $0 \leq t < n$.

$$\max_{y \in \mathcal{F}(x)} \mathbb{Y}_{t+1}(y) - \min_{y \in \mathcal{F}(x)} \mathbb{Y}_{t+1}(y) \leqslant c_{t+1}$$

Then the following large deviation bound holds

$$\mathbb{P}\left[\sum_{i=1}^{n} \mathbb{Y}_{i} \geqslant E\right] \leqslant \exp\left(-2E^{2}/\sum_{i=1}^{n}c_{i}^{2}\right)$$

Subtlety. Fix *t*. For different $x \in \Omega$, it is possible that $\max_{y \in \mathcal{F}(x)} \mathbb{Y}_{t+1}(y)$ is different from $\min_{y \in \mathcal{F}(x)} \mathbb{Y}_{t+1}(y)$. All that matters is that their <u>difference</u> is bounded by c_{t+1} .

< A >

- The proof outline is identical to the Hoeffding bound proof.
- If we prove the following bound, then we are done. For any h > 0, we have

$$\mathbb{E}\left[\exp\left(h\sum_{i=1}^{n}\mathbb{Y}_{i}\right)\right]\leqslant\exp\left(\frac{h^{2}}{8}\sum_{i=1}^{n}c_{i}^{2}\right)$$

This form of the inequality should remind us that we should be using the Hoeffding's Lemma in our proof.

- 4 同 6 4 回 6 4 回 6

- The distribution \mathbb{Y}_{t+1} can depend on the previous outcomes $(\omega_1, \dots, \omega_t)$
- For different x ∈ Ω, it is possible that max_{y∈F(x)} 𝒱_{t+1}(y) is different from min_{y∈F(x)} 𝒱_{t+1}(y). All that matters is that their difference is bounded by c_{t+1}

▲御▶ ▲注▶ ▲注▶

Experiment.

- There are R red balls and B blue balls in an urn at time t = 0
- At any time, we sample a random ball from the urn (and we do not replace the ball back into the urn)
- We are interested in understanding the behavior of the random variable S_n that counts the total number of red balls at the end of time t = n (that is, n balls are sampled without replacement from the urn)
- We assume that R + B ≥ n, i.e., the bin never runs out of balls in our experiment

・ 同 ト ・ ヨ ト ・ ヨ ト

Formalization of the Problem I

- The variables $(X_1, ..., X_n)$ represent the balls we sample at time 1, ..., n, respectively
- We are interest in understanding the concentration of the random variable

$$\mathbb{S}_n := \sum_{i=1}^n \mathbf{1}_{\{\mathbb{X}_i = R\}}$$

Note that the probability of $X_i = R$ depends on the sum S_{i-1}

 Let us first calculate the expected value of this random value. Prove by mathematical induction that the following result is true for n ≥ 0.

Lemma

$$\mathbb{E}\left[\mathbb{S}_n\right] = n \frac{R}{R+B}$$

Azuma's Inequality

・ロト ・四ト ・ヨト ・ヨト

In this lecture, all results will be mentioned. No proofs shall be provided. Students are encouraged to prove these results on their own.

• Now, we shall prove a concentration bound around this expected value

・ 同 ト ・ ヨ ト ・ ヨ ト

Let

$$\{\emptyset,\Omega\} = \mathcal{F}_0 \subset \mathcal{F}_1 \subset \cdots \subset \mathcal{F}_n$$

represent the natural ball-exposure filtration for this problem.

• This statement, in short, states that $\Omega = \{R, B\}^n$ and, for any $x \in \Omega$ and $0 \leq i \leq n$, we have

$$\mathcal{F}_i(x) = \{x_1 x_2 \dots x_i\} \times \{R, B\}^{n-i}$$

That is, $\mathcal{F}_i(x)$ is the set of all $y \in \Omega$ such that $x_1 = y_1, \ldots, x_i = y_i$

▲御▶ ▲臣▶ ★臣▶

The Filtration and the Martingale II

• Now, we need to define the random functions $\mathbb{F}_0, \ldots, \mathbb{F}_n$ that are $\Omega \to \mathbb{R}$.

$$\mathbb{F}_i(x) := \mathbb{E}\left[\mathbb{S}_n | \mathcal{F}_i\right](x)$$

Let us parse this statement. Recall that $\mathcal{F}_i(x)$ denotes the set of all $y \in \Omega$ that agree at the first *i* entries with *x*, i.e., the subset $\{x_1x_2...x_i\} \times \{R, B\}^{n-i}$. Now, $\mathbb{F}_i(x)$ represents the conditional expectation of \mathbb{S}_n restricted to *x* in the subset $\mathcal{F}_i(x)$.

- Observe that 𝔽₀ = 𝔼 [𝔅_n], i.e., the expected value of 𝔅_n in this experiment. We have already computed this quantity previously, i.e., we have 𝔅₀ = n ^R/_{R+𝔅}.
- Observe that \mathbb{F}_i is \mathcal{F}_i -measurable, for $0 \leq i \leq n$
- Now, we need to prove that the martingale property holds. That is, we need to prove (the functional identity) $\mathbb{E}\left[\mathbb{F}_{i+1}|\mathcal{F}_i\right] = (\mathbb{F}_i|\mathcal{F}_i)$, for all $0 \leq i < n$

The Filtration and the Martingale III

Note that (F₀,..., F_n) is Doob's martingale for the function S_n. So, it is a martingale. Nevertheless, let us prove that (F₀,..., F_n) is a martingale with respect to the ball-exposure filtration (F₀,..., F_n) using elementary techniques. Towards this, we need to compute the following quantity

 $(\mathbb{F}_i|\mathcal{F}_i)(x) = ?$

Prove the following result.

Lemma

Let $0 \le i \le n$. Let $\mathbb{S}_i(x)$ represent the number of red balls in the first i samples of $x \in \{R, B\}^n$. Then, we have

$$(\mathbb{F}_i|\mathcal{F}_i)(x) = \mathbb{S}_i(x) + (n-i)\frac{R - \mathbb{S}_i(x)}{R + B - i}$$

Azuma's Inequality

The Filtration and the Martingale IV

Intuitively, we have seen $\mathbb{S}_i(x)$ until time t = i. In the future, we expect to see $(n - i)\frac{R - \mathbb{S}_i(x)}{R + B - i}$ red balls (there are $R - \mathbb{S}_i(x)$ red balls left in the urn among R + B - i balls). At time time t = i + 1, the probability that we see a red ball is $p = \frac{R - \mathbb{S}_i(x)}{R + B - i}$. So, we have

$$\mathbb{E}\left[\mathbb{F}_{i+1}|\mathcal{F}_i\right](x) = p\left(\mathbb{S}_i(x) + 1 + (n-i-1)\frac{R - \mathbb{S}_i(x) - 1}{R + B - i - 1}\right)$$
$$(1-p)\left(\mathbb{S}_i(x) + (n-i-1)\frac{R - \mathbb{S}_i(x)}{R + B - i - 1}\right)$$

We need to prove that the RHS is equal to $\mathbb{S}_i(x) + (n-i)\frac{R-\mathbb{S}_i(x)}{R+B-i}$. This step is left as an exercise. (Think: You have already proved this result earlier!)

(日) (日) (日)

The Filtration and the Martingale V

• Let us calculate the value of c_{i+1} , for $0 \leq i < n$.

$$= \max_{y \in \mathcal{F}_{i}(x)} \mathbb{F}_{i+1}(y) - \min_{y \in \mathcal{F}_{i}(x)} \mathbb{F}_{i+1}(y)$$

= $\left(\mathbb{S}_{i}(x) + 1 + (n - i - 1) \frac{R - \mathbb{S}_{i}(x) - 1}{R + B - i - 1} \right)$
- $\left(\mathbb{S}_{i}(x) + (n - i - 1) \frac{R - \mathbb{S}_{i}(x)}{R + B - i - 1} \right)$
= $1 - \frac{n - i - 1}{R + B - i - 1}$
< $1 =: c_{i+1}$

→ 御 ト → 注 ト → 注 ト

The Filtration and the Martingale VI

• By Azuma's inequality, we have

$$\mathbb{P}\left[\mathbb{F}_n - \mathbb{F}_0 \ge E\right] \le \exp\left(-2E^2 / \sum_{i=1}^n c_i^2\right)$$

This inequality is equivalent to

$$\mathbb{P}\left[\mathbb{F}_n - n\frac{R}{R+B} \ge E\right] \le \exp(-2E^2/n)$$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶