
Lecture 13: Martingale Difference Sequence &
Azuma-Hoeffding Inequality
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Martingale Difference Sequence

Let {∅,Ω} = F0 ⊂ F1 ⊂· · · ⊂ Fn be a filtration
Let (F0,F1, . . . ,Fn) be a martingale sequence with respect to
the filtration above
Let Y0 = F0, and Yt+1 = Ft+1 − Ft , for 0 6 t < n

Intuition: Yt+1 measures the increase in Yt+1 from Yt . If
Yt+1 is negative then it implies that Yt+1 is smaller than Yt

Note that E
[
Yt+1|Ft

]
= 0, because we have

E
[
Ft+1|Ft

]
= Ft
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Azuma’s Inequality

Theorem (Azuma’s Inequality)

Suppose (Y0, . . . ,Yn) be a martingale difference sequence with
respect to the filtration {∅,Ω} = F0 ⊂ F1 ⊂· · · ⊂ Fn. Assume
that the following condition holds for all x ∈ Ω and 0 6 t < n.

max
y∈F(x)

Yt+1(y)− min
y∈F(x)

Yt+1(y) 6 ct+1

Then the following large deviation bound holds

P

 n∑
i=1

Yi > E

 6 exp

−2E 2/

n∑
i=1

c2
i


Subtlety. Fix t. For different x ∈ Ω, it is possible that
maxy∈F(x)Yt+1(y) is different from miny∈F(x)Yt+1(y). All that
matters is that their difference is bounded by ct+1.
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Proof Outline

The proof outline is identical to the Hoeffding bound proof.
If we prove the following bound, then we are done. For any
h > 0, we have

E

exp

h
n∑

i=1

Yi


 6 exp

h2

8

n∑
i=1

c2
i


This form of the inequality should remind us that we should be
using the Hoeffding’s Lemma in our proof.
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Differences from Hoeffding’s Bound

The distribution Yt+1 can depend on the previous outcomes
(ω1, . . . , ωt)

For different x ∈ Ω, it is possible that maxy∈F(x)Yt+1(y) is
different from miny∈F(x)Yt+1(y). All that matters is that
their difference is bounded by ct+1
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Hypergeometric Series: An Example

Experiment.
There are R red balls and B blue balls in an urn at time t = 0
At any time, we sample a random ball from the urn (and we
do not replace the ball back into the urn)
We are interested in understanding the behavior of the random
variable Sn that counts the total number of red balls at the
end of time t = n (that is, n balls are sampled without
replacement from the urn)
We assume that R + B > n, i.e., the bin never runs out of
balls in our experiment
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Formalization of the Problem I

The variables (X1, . . . ,Xn) represent the balls we sample at
time 1, . . . , n, respectively

We are interest in understanding the concentration of the
random variable

Sn :=
n∑

i=1

1{Xi=R}

Note that the probability of Xi = R depends on the sum Si−1

Let us first calculate the expected value of this random value.
Prove by mathematical induction that the following result is
true for n > 0.

Lemma

E [Sn] = n
R

R + B
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Formalization of the Problem II

In this lecture, all results will be mentioned. No proofs shall be
provided. Students are encouraged to prove these results on
their own.

Now, we shall prove a concentration bound around this
expected value
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The Filtration and the Martingale I

Let
{∅,Ω} = F0 ⊂ F1 ⊂· · · ⊂ Fn

represent the natural ball-exposure filtration for this problem.

This statement, in short, states that Ω = {R,B}n and, for any
x ∈ Ω and 0 6 i 6 n, we have

Fi (x) = {x1x2 . . . xi} × {R,B}n−i

That is, Fi (x) is the set of all y ∈ Ω such that x1 = y1, . . . ,
xi = yi
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The Filtration and the Martingale II

Now, we need to define the random functions F0, . . . ,Fn that
are Ω→ R.

Fi (x) := E
[
Sn|Fi

]
(x)

Let us parse this statement. Recall that Fi (x) denotes the set
of all y ∈ Ω that agree at the first i entries with x , i.e., the
subset {x1x2 . . . xi} × {R,B}n−i . Now, Fi (x) represents the
conditional expectation of Sn restricted to x in the subset
Fi (x).
Observe that F0 = E [Sn], i.e., the expected value of Sn in this
experiment. We have already computed this quantity
previously, i.e., we have F0 = n R

R+B .
Observe that Fi is Fi -measurable, for 0 6 i 6 n

Now, we need to prove that the martingale property holds.
That is, we need to prove (the functional identity)
E
[
Fi+1|Fi

]
= (Fi |Fi ), for all 0 6 i < n
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The Filtration and the Martingale III

Note that (F0, . . . ,Fn) is Doob’s martingale for the function
Sn. So, it is a martingale. Nevertheless, let us prove that
(F0, . . . ,Fn) is a martingale with respect to the ball-exposure
filtration (F0, . . . ,Fn) using elementary techniques. Towards
this, we need to compute the following quantity

(Fi |Fi )(x) =?

Prove the following result.

Lemma
Let 0 6 i 6 n. Let Si (x) represent the number of red balls in the
first i samples of x ∈ {R,B}n. Then, we have

(Fi |Fi )(x) = Si (x) + (n − i)
R − Si (x)

R + B − i
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The Filtration and the Martingale IV

Intuitively, we have seen Si (x) until time t = i . In the future,
we expect to see (n − i)R−Si (x)R+B−i red balls (there are R − Si (x)
red balls left in the urn among R + B − i balls).
At time time t = i + 1, the probability that we see a red ball is
p = R−Si (x)

R+B−i . So, we have

E
[
Fi+1|Fi

]
(x) = p

(
Si (x) + 1 + (n − i − 1)

R − Si (x)− 1
R + B − i − 1

)
(1− p)

(
Si (x) + (n − i − 1)

R − Si (x)

R + B − i − 1

)
We need to prove that the RHS is equal to
Si (x) + (n− i)R−Si (x)R+B−i . This step is left as an exercise. (Think:
You have already proved this result earlier!)
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The Filtration and the Martingale V

Let us calculate the value of ci+1, for 0 6 i < n.

= max
y∈Fi (x)

Fi+1(y)− min
y∈Fi (x)

Fi+1(y)

=

(
Si (x) + 1 + (n − i − 1)

R − Si (x)− 1
R + B − i − 1

)
−
(
Si (x) + (n − i − 1)

R − Si (x)

R + B − i − 1

)
= 1− n − i − 1

R + B − i − 1
< 1 =: ci+1
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The Filtration and the Martingale VI

By Azuma’s inequality, we have

P [Fn − F0 > E ] 6 exp

−2E 2/

n∑
i=1

c2
i


This inequality is equivalent to

P
[
Fn − n

R

R + B
> E

]
6 exp(−2E 2/n)
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