


Martingale Difference Sequence

Let {0,Q} = Fo C F1 C--- C F, be a filtration

Let (Fo,F1,...,F,) be a martingale sequence with respect to
the filtration above

Let Yo = FFg, and Yip1 =Fepr — Fy, for0<t<n

Intuition: Y1 measures the increase in Y¢;1 from Y. If
Y:y1 is negative then it implies that Y;;1 is smaller than Y,

Note that E [Ytﬂ\}}] = 0, because we have
E [Fe1|Fe] =F:
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Azuma'’s Inequality

Theorem (Azuma's Inequality)

Suppose (Yo, ...,Y,) be a martingale difference sequence with
respect to the filtration {0,Q} = Fo C F1 C--- C Fp. Assume
that the following condition holds for all x € Q and 0 < t < n.

max Y — min Y <c
VeF () t+1()/) SR 00 t+1()/) t+1

Then the following large deviation bound holds

n n
P> Yi>E| <exp|—2E%/> &
i=1 i=1

Subtlety. Fix t. For different x € Q, it is possible that
maxyer(x) Ye+1(y) is different from min, c 7 Yera(y). All that
matters is that their difference is bounded by ¢ 1.
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Proof Outline

@ The proof outline is identical to the Hoeffding bound proof.

@ If we prove the following bound, then we are done. For any
h > 0, we have

n

n
h2
E |exp hZY,- < exp §Zc,2
i=1 i=1

This form of the inequality should remind us that we should be
using the Hoeffding's Lemma in our proof.
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Differences from Hoeffding's Bound

@ The distribution Y1 can depend on the previous outcomes
(Wi, ... wt)

o For different x € Q, it is possible that max,c 7(x) Yer1(y) is
different from minyc 7, Ye+1(y). All that matters is that
their difference is bounded by c¢;11
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Hypergeometric Series: An Example

Experiment.
@ There are R red balls and B blue balls in an urn at time t =0

@ At any time, we sample a random ball from the urn (and we
do not replace the ball back into the urn)

@ We are interested in understanding the behavior of the random
variable S, that counts the total number of red balls at the
end of time t = n (that is, n balls are sampled without
replacement from the urn)

@ We assume that R 4+ B > n, i.e., the bin never runs out of
balls in our experiment
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Formalization of the Problem |

@ The variables (Xy,...,X,) represent the balls we sample at
time 1,...,n, respectively

@ We are interest in understanding the concentration of the

random variable .
Sn = ZI{X:‘:R}
i=1

Note that the probability of X; = R depends on the sum S;

@ Let us first calculate the expected value of this random value.
Prove by mathematical induction that the following result is
true for n > 0.

E[S,] =n

R+ B
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Formalization of the Problem Il

In this lecture, all results will be mentioned. No proofs shall be
provided. Students are encouraged to prove these results on
their own.

@ Now, we shall prove a concentration bound around this
expected value
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The Filtration and the Martingale |

o Let
{0,Q =FoC F1C-+- CFp

represent the natural ball-exposure filtration for this problem.

@ This statement, in short, states that Q = {R, B}" and, for any
x € Qand 0 <7< n, we have

Fi(x) = {x1x2...xi} x {R, B}"—i

That is, Fj(x) is the set of all y € Q such that x; =y, ...,

Xi = VYi
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The Filtration and the Martingale |l

@ Now, we need to define the random functions Fg,...,[F, that
are Q2 — R.
Fi(x) :=E [S,,]]—",-] (x)

Let us parse this statement. Recall that F;(x) denotes the set
of all y € Q that agree at the first i entries with x, i.e., the
subset {x1x2...x;} x {R, B}"~". Now, F;(x) represents the
conditional expectation of S, restricted to x in the subset
Fi(x).

@ Observe that Fg = E[S,], i.e., the expected value of S, in this
experiment. We have already computed this quantity
previously, i.e., we have Fy = ”WRB'

@ Observe that F; is F;-measurable, for 0 < i < n

@ Now, we need to prove that the martingale property holds.
That is, we need to prove (the functional identity)

E [Fit1|Fi] = (Fi|Fi), forall 0 < i< n
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The Filtration and the Martingale Il

e Note that (Fo,...,F,) is Doob’s martingale for the function
Sp. So, it is a martingale. Nevertheless, let us prove that
(Fo,...,[F,) is a martingale with respect to the ball-exposure
filtration (Fo,...,Fn) using elementary techniques. Towards
this, we need to compute the following quantity

(Fi|F7)(x) =7

Prove the following result.

Let 0 < i < n. Let Si(x) represent the number of red balls in the
first i samples of x € {R, B}". Then, we have

R —S;i(x)

(FilF)(x) = 8i(x) + (n = ) g
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The Filtration and the Martingale IV

Intuitively, we have seen S;(x) until time t = i. In the future,

we expect to see (n — i)’,ﬁ,fé(f,? red balls (there are R — S;(x)

red balls left in the urn among R + B — i balls).
At time time t = j + 1, the probability that we see a red ball is

p= "f?jrSB"(fi). So, we have

R—S,‘(X)—l
R+B—-i—-1

(1= ) (5160 + (0= - D g )

E [FyalF] () = p (S,-<x) F14(n—im1)

We need to prove that the RHS is equal to
Si(x)+ (n—1) ’f?jrgé(_’?. This step is left as an exercise. (Think:

You have already proved this result earlier!)
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The Filtration and the Martingale V

@ Let us calculate the value of ¢j41, for 0 </ < n.

= max Fii(y) — min Fipi(y)

yE]—',-(x) ye}',-(x)
- . R — S,‘(X) -1
= (S’(X)+1+(n_l_1)R+B—i—l)
) R —Si(x)

- (S'(X”(”‘ - 1)R+B—i—1>

- n—i—1
R+B—-i—-1

<l=ici1
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The Filtration and the Martingale VI

@ By Azuma's inequality, we have
n
P[F,—TFo > E] <exp [ 262/ ¢
i=1

This inequality is equivalent to

P |F,—n

B> E] < exp(—2E2/n)
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